
Predicting Income and Employment in the US

— Junchan Byeon, Alex Chen, David —
Chen, Suzanne Papik, Yingqi Zhang



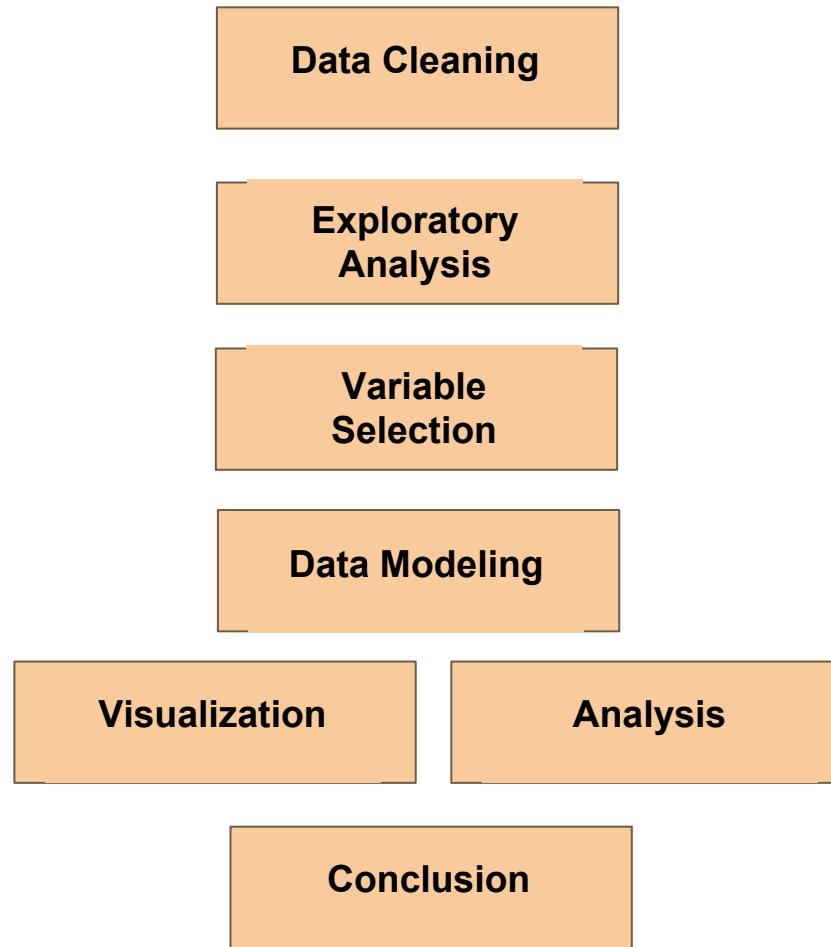
AMERICAN COMMUNITY SURVEY

U.S. CENSUS BUREAU

Motivation

- Determine factors that predict Income/Unemployment

Procedure

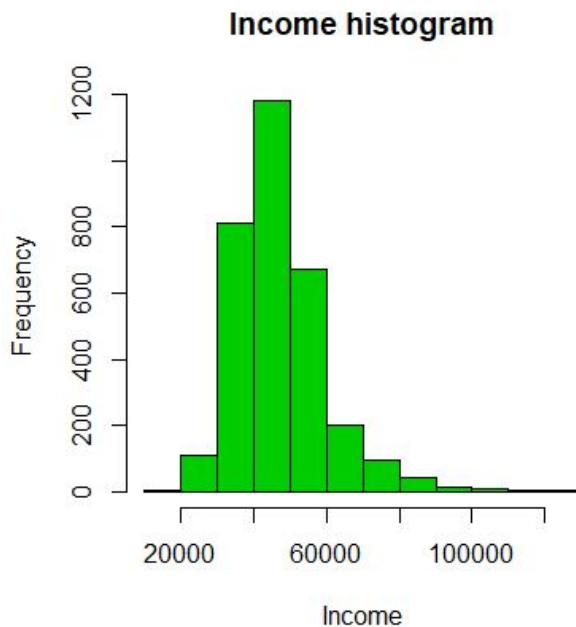
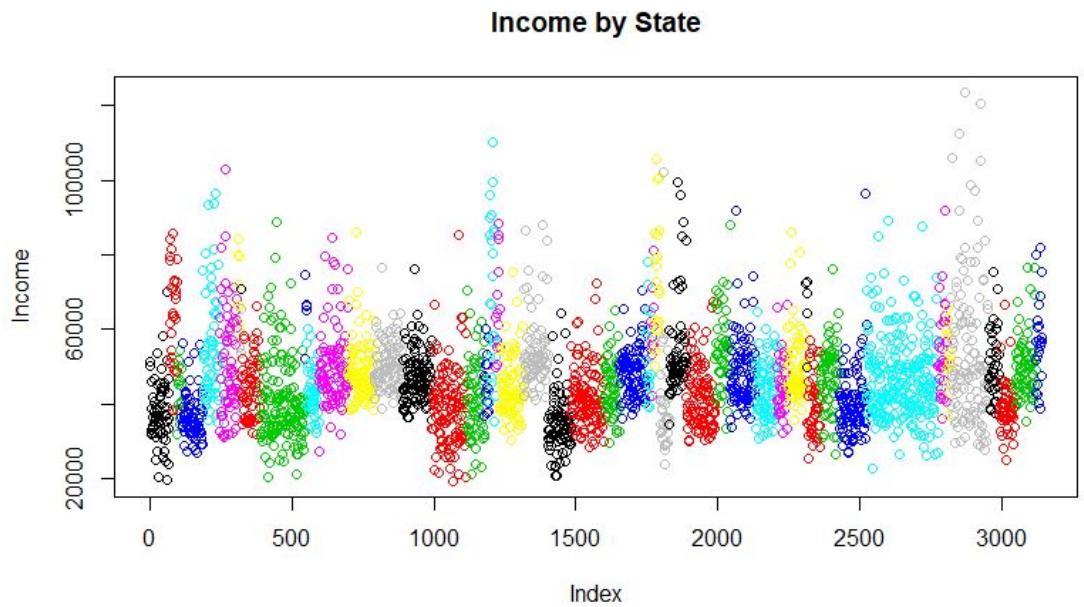


Data Cleaning

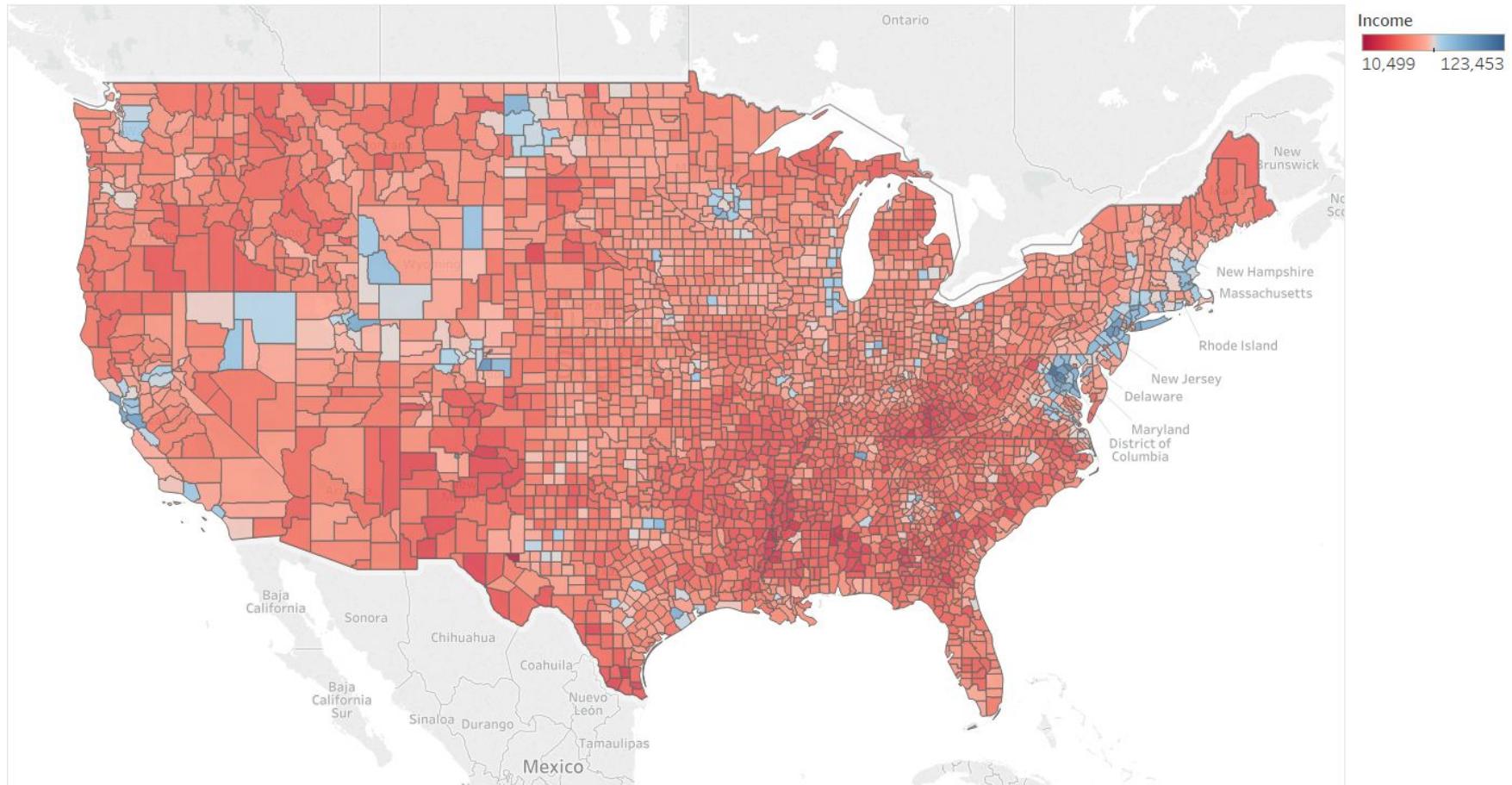
1. Remove NAs (***)
2. Training and Testing datasets (75-25)
3. Removed the Census Id, State, County
4. Remove Puerto Rico
5. Dependent variables

CensusId	State	County	TotalPop	Men	Women	Hispanic	White	Black	Native
1001	Alabama	Autauga	55221	26745	28476	2.6	75.8	18.5	0.4
1003	Alabama	Baldwin	195121	95314	99807	4.5	83.1	9.5	0.6
1005	Alabama	Barbour	26932	14497	12435	4.6	46.2	46.7	0.2
1007	Alabama	Bibb	22604	12073	10531	2.2	74.5	21.4	0.4

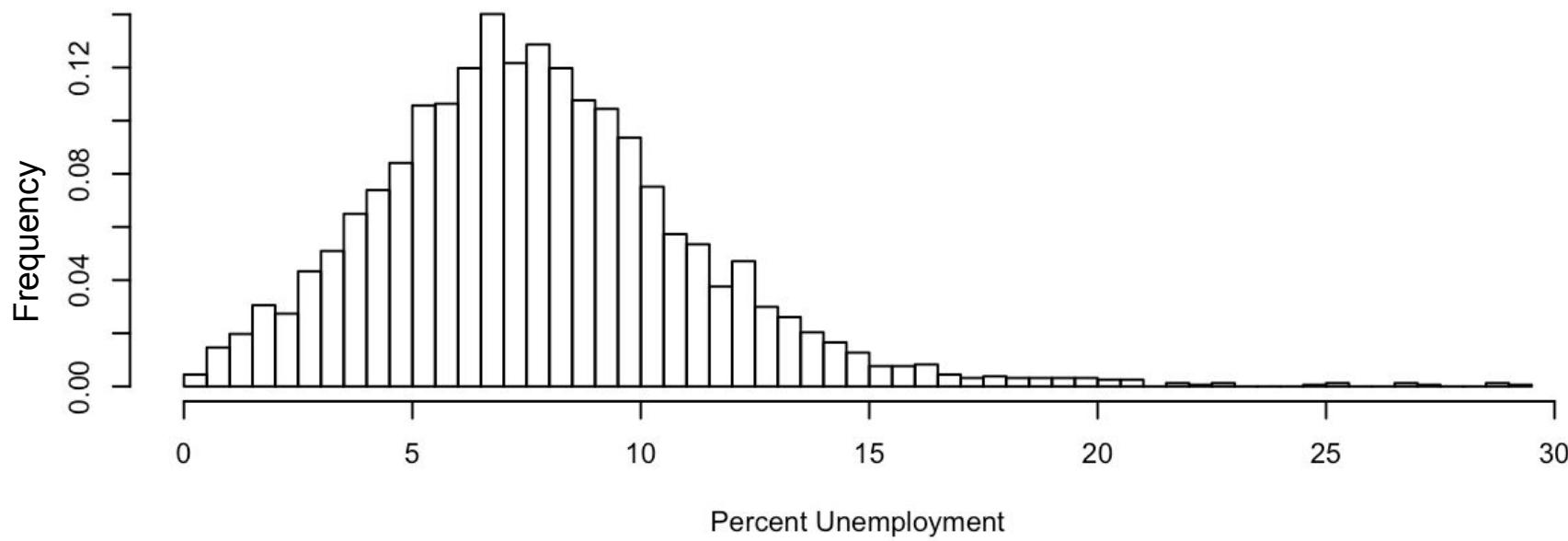
Exploratory Data Analysis



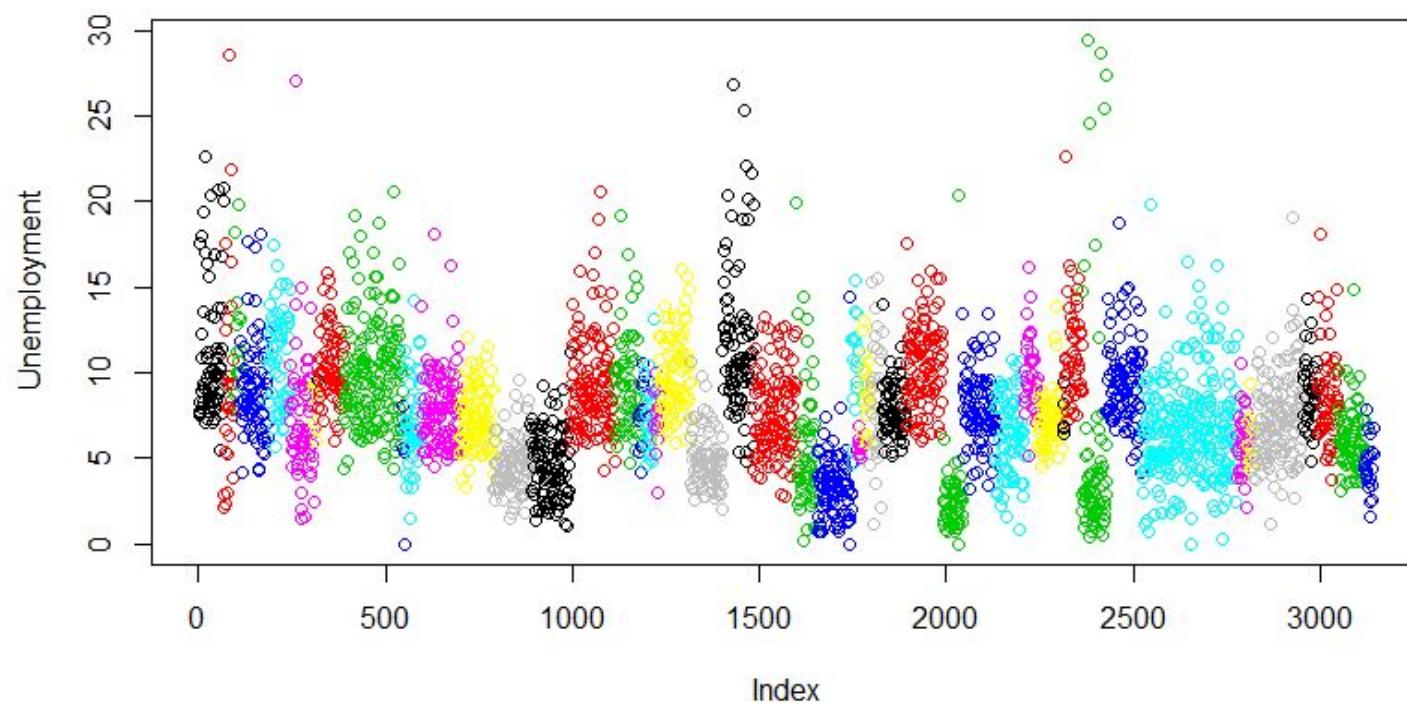
Income Map of United States



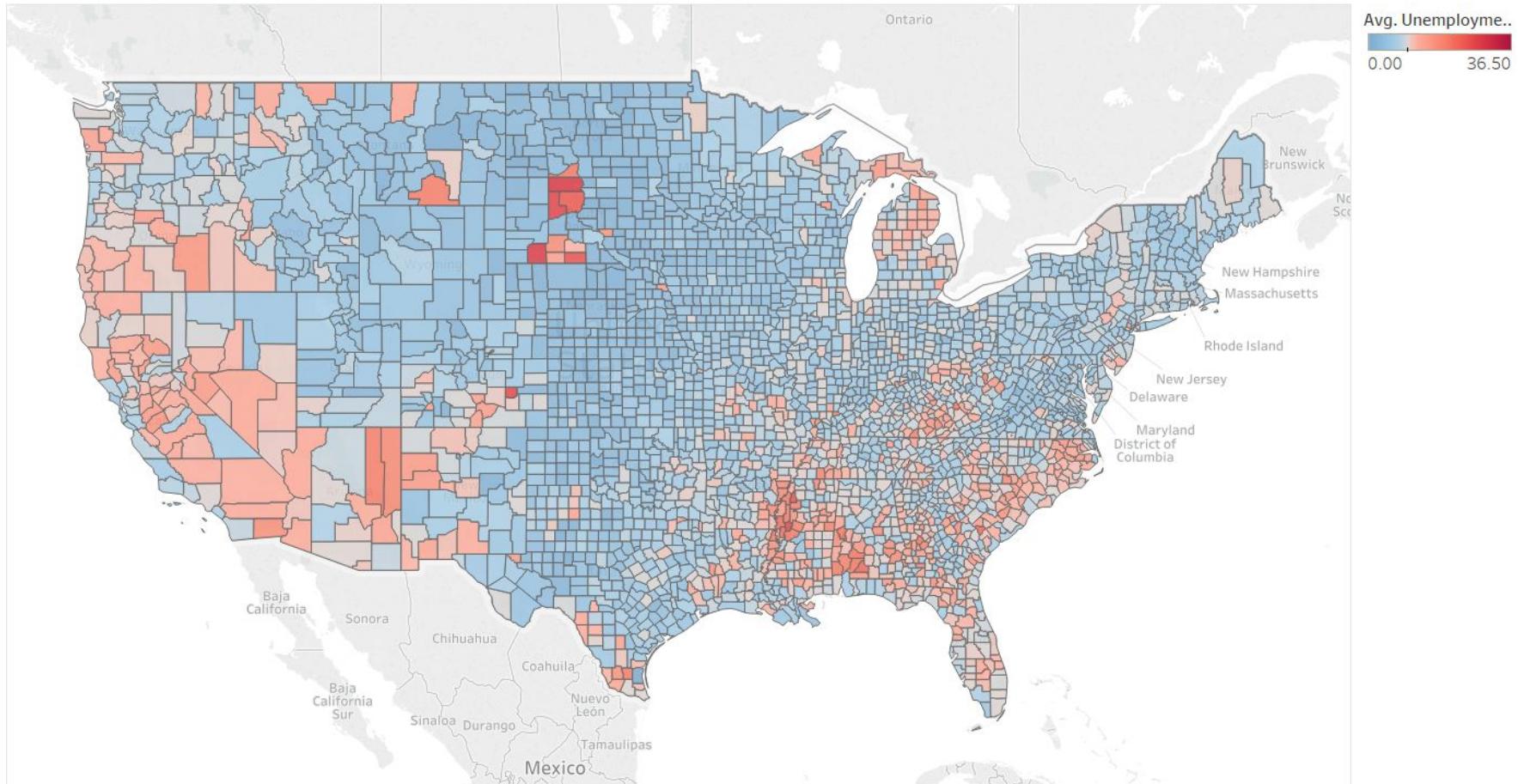
Unemployment



Unemployment by State



Unemployment by County



Variable Selection

> vif(lm_allt)				
	TotalPop	Men	Hispanic	white
7451.110911	6464.941914	183.156687	266.644104	
Black	Native	Asian	Pacific	
102.734727	31.231106	6.858992	1.858937	
citizen	IncomeErr	IncomePerCap	IncomePerCapErr	
205.375209	2.332470	5.922559	2.403603	
Poverty	childPoverty	Professional	Service	
13.696823	9.911041	10078.101624	3283.472130	
Office	Construction	Production	Drive	
2539.436610	4408.171850	8183.775501	12253.759251	
Carpool	Transit	walk	otherTransp	
1788.326863	1976.091792	2892.623242	578.205941	
WorkAtHome	MeanCommute	Employed	Privatework	
2129.373124	1.572328	278.635023	19203.702994	
Publicwork	selfEmployed	Familywork	Unemployment	
13105.435953	4808.750795	65.538771	2.746457	

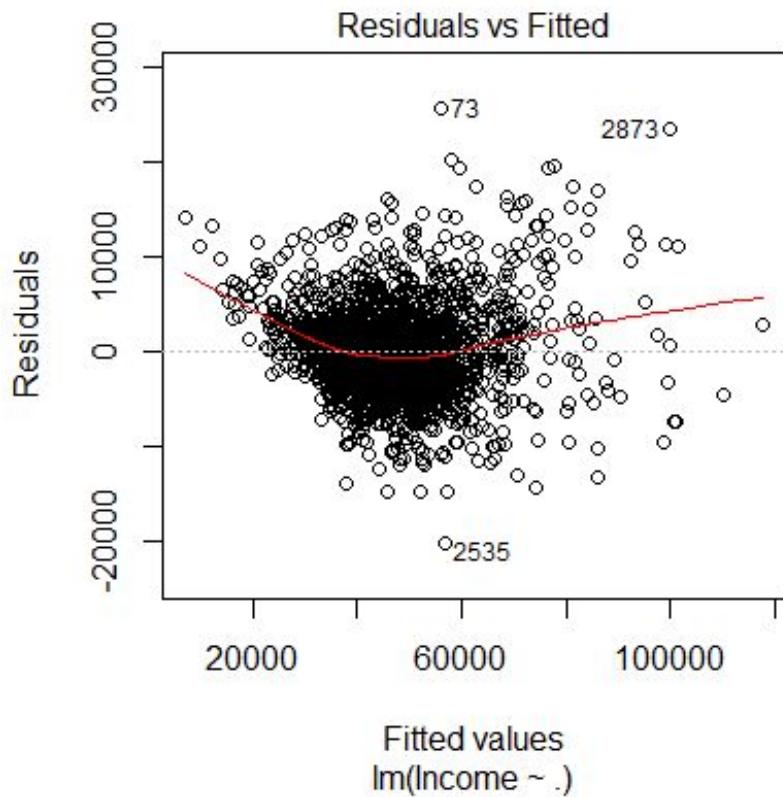
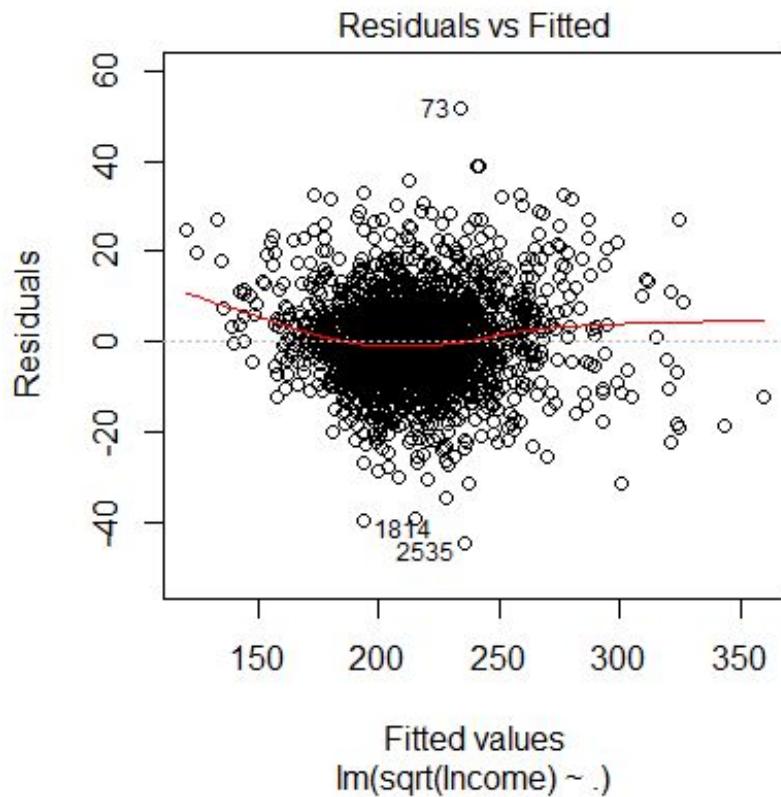
Multiple Linear Regression - Income

Data Modeling-Income

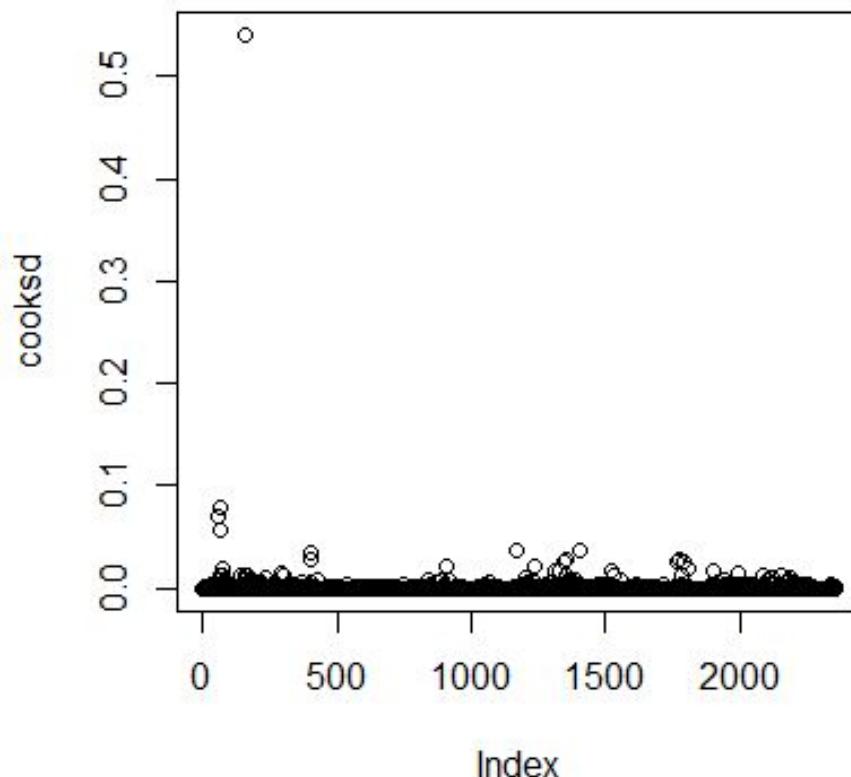
```
vif(lm_manual)
```

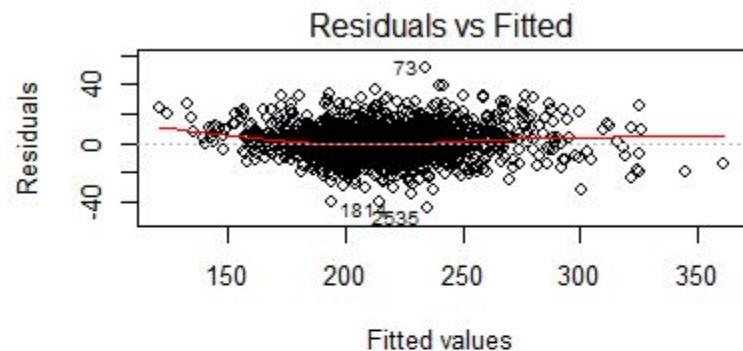
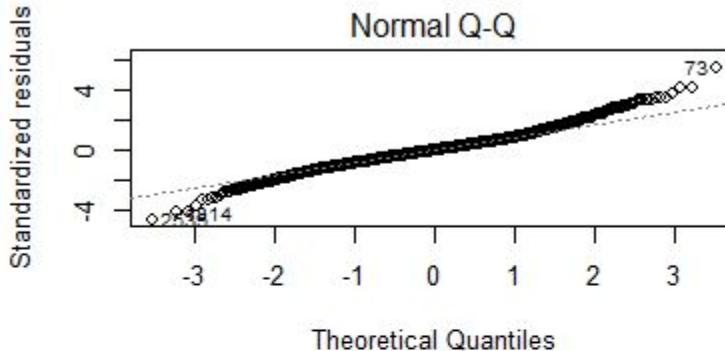
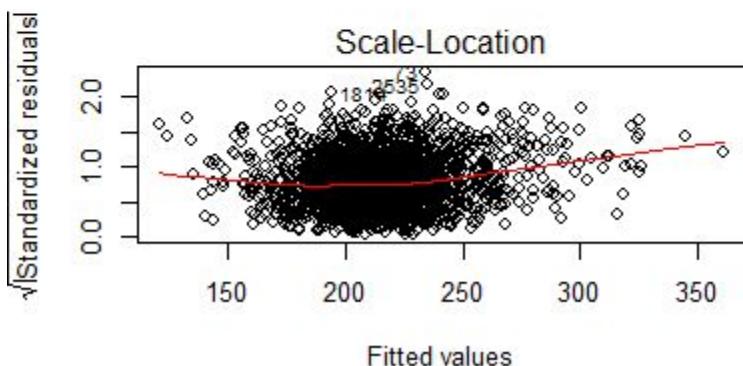
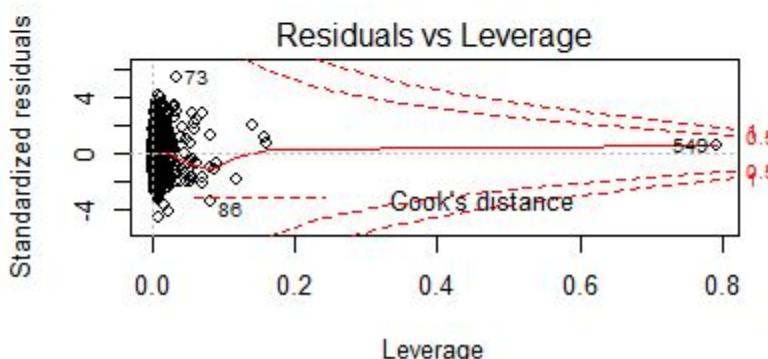
	white	black	Native	Asian
TotalPop	2.720177	2.576476	1.653097	2.123701
Pacific	IncomePerCap	Poverty	Professional	Drive
1.283367	4.443992	3.580224	2.820479	2.043680
workAtHome	MeanCommute	PrivateWork	Unemployment	
2.091952	1.290788	1.975467	2.208786	

Transforming the Data



Influential Obs by Cooks distance





AIC/BIC Model

coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	1.641e+02	3.763e+00	43.618	< 2e-16	***
TotalPop	-5.636e-06	9.780e-07	-5.763	9.36e-09	***
white	-2.861e-01	1.676e-02	-17.070	< 2e-16	***
Black	-1.948e-01	2.196e-02	-8.868	< 2e-16	***
Native	3.678e-01	3.709e-02	9.917	< 2e-16	***
Asian	9.716e-01	1.085e-01	8.953	< 2e-16	***
Pacific	-5.640e-01	2.661e-01	-2.120	0.03413	*
IncomePerCap	2.160e-03	7.023e-05	30.751	< 2e-16	***
Poverty	-1.843e+00	5.677e-02	-32.463	< 2e-16	***
Professional	4.734e-01	5.132e-02	9.224	< 2e-16	***
workAtHome	-4.268e-01	7.704e-02	-5.540	3.36e-08	***
MeanCommute	5.848e-01	4.037e-02	14.484	< 2e-16	***
Privatework	3.642e-01	3.598e-02	10.123	< 2e-16	***
Unemployment	-2.320e-01	8.378e-02	-2.769	0.00567	**

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1					

Residual standard error: 9.531 on 2342 degrees of freedom
Multiple R-squared: 0.8802, Adjusted R-squared: 0.8795
F-statistic: 1324 on 13 and 2342 DF, p-value: < 2.2e-16

Data Modeling-Income

Fit the LASSO, Ridge, and Elastic Net models:

```
fit.lasso<-glmnet(x.train,y.train,family='gaussian',alpha=1)
fit.ridge<-glmnet(x.train,y.train,family='gaussian',alpha=0)
fit.elnet<-glmnet(x.train,y.train,family='gaussian',alpha=0.5)
```

Creates 10-fold Cross Validation for each alpha:

```
for (i in 0:10) {
  assign(paste('fit',i,sep=''),
         kcv.glmnet(x.train,y.train,type.measure='mse',alpha=i/10,family='gaussian'))
}
```

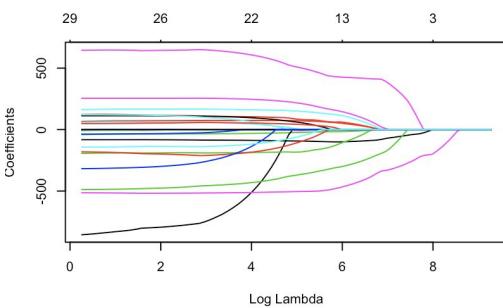
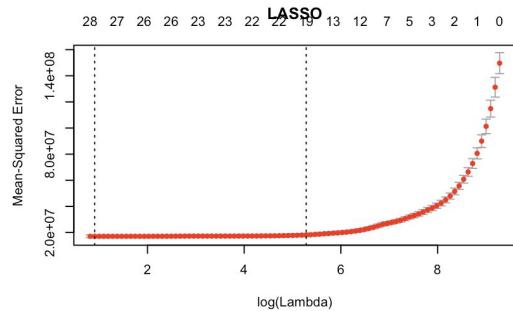
Plot the solution path and cross-validated MSE as function of λ

```
plot(fit.lasso,xvar='lambda')
plot(fit10,main='LASSO')

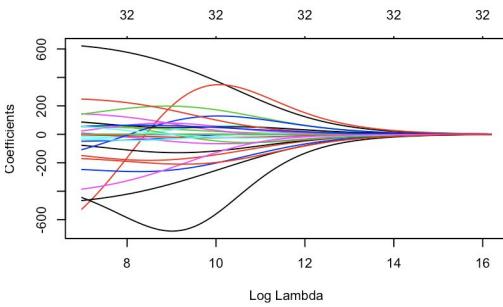
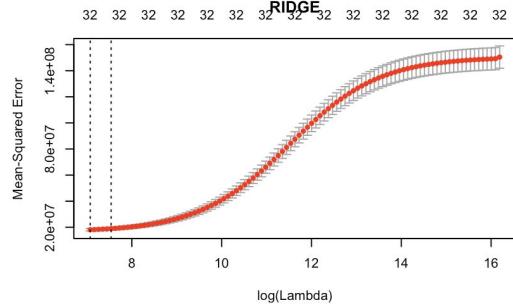
plot(fit.ridge,xvar='lambda')
plot(fit0,main='RIDGE')

plot(fit.elnet,xvar='lambda')
plot(fit5,main='Elastic Net')
```

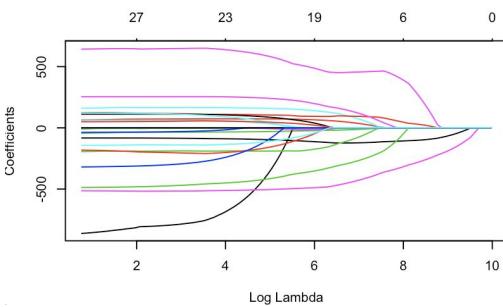
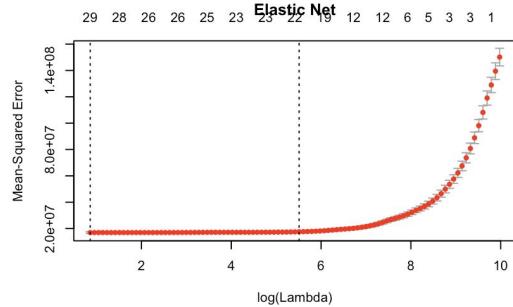
LASSO



RIDGE



ELASTIC NET



Prediction-Income

Predict yhat0 to yhat10 using the fit for each alpha

```
yhat0<-predict(fit0,s=fit0$lambda.1se,newx=x.test)
```

Compute the Mean Absolute Error and Mean Square Error for each yhat

```
(mean(abs(y.test-yhat0)))
```

```
(mse0<-mean((y.test-yhat0)^2))
```

Fitting the Income Model

```
fit.AIC.BIC <- step(lm_manual2, direction = "both", k = 1, trace = 0)
```

MAE= 3171

MSE=19660025

```
fit.lasso<-glmnet(x.train,y.train,family='gaussian',alpha=1)
```

MAE= 3187.912

MSE=18104664

```
fit.ridge<-glmnet(x.train,y.train,family='gaussian',alpha=0)
```

MAE= 43654.52

MSE=19009876

fit.elnet<-glmnet(x.train,y.train,family='gaussian',alpha=0.5)

MAE= 3152.585

MSE=17675860

Elastic Net

- Reduce VIF
- Remove Insignificant Predictors

(Intercept)	2.767746e+04	Professional	1.002065e+02
TotalPop	.	Service	-1.888259e+02
Men	.	Office	.
Hispanic	7.130313e+01	Construction	1.054030e+01
White	-2.642650e+01	Production	-1.322014e+01
Black	.	Drive	.
Native	1.528397e+02	Carpool	6.691704e+01
Asian	5.238716e+02	Transit	-1.106874e+02
Pacific	-9.184375e+00	Walk	.
Citizen	-1.316442e-03	OtherTransp	.
IncomeErr	2.811070e-01	WorkAtHome	.
IncomePerCap	1.181609e+00	MeanCommute	2.258283e+02
IncomePerCapErr	-1.088883e+00	Employed	.
Poverty	-4.964837e+02	PrivateWork	.
ChildPoverty	-1.041434e+02	PublicWork	3.672546e+01
		SelfEmployed	-3.794166e+02
		FamilyWork	.
		Unemployment	-8.190530e+01

Logistic Regression - Unemployment

Data Manipulation

- Had to create new binary variable in the dataset
- National unemployment rate in January of 2015 was 5.7%
- Created a binary variable that took the value 1 when the unemployment rate was greater than or equal to 5.7, and 0 when the unemployment rate was less than 5.7

```
cendata$unemploy<-ifelse(cendata$Unemployment>=5.7,cendata$unemploy<-1,cendata$unemploy<-0)
```

Employed	PrivateWork	PublicWork	SelfEmployed	FamilyWork	Unemployment	unemploy
2838	68.9	26.0	5.1	0.0	20.8	1
8894	74.3	16.0	9.6	0.1	9.6	1
2519	78.6	15.4	5.9	0.2	2.9	0
3787	77.9	18.9	3.2	0.0	2.1	0
152355	73.3	20.9	5.7	0.1	6.7	1

Data Modeling-Unemployment

Fit the LASSO, Ridge, and Elastic Net models:

```
fit.lasso2<-glmnet(x.train2,y.train2,family='binomial',alpha=1)
fit.ridge2<-glmnet(x.train2,y.train2,family="binomial",alpha=0)
fit.elnet2<-glmnet(x.train2,y.train2,family='binomial',alpha=0.5)
```

Creates 10-fold Cross Validation for each alpha:

```
for (i in 0:10) {
  assign(paste('fit',i,sep=''),cv.glmnet(x.train2,y.train2,type.measure='mse',alpha=i/10,family='binomial'))
}
```

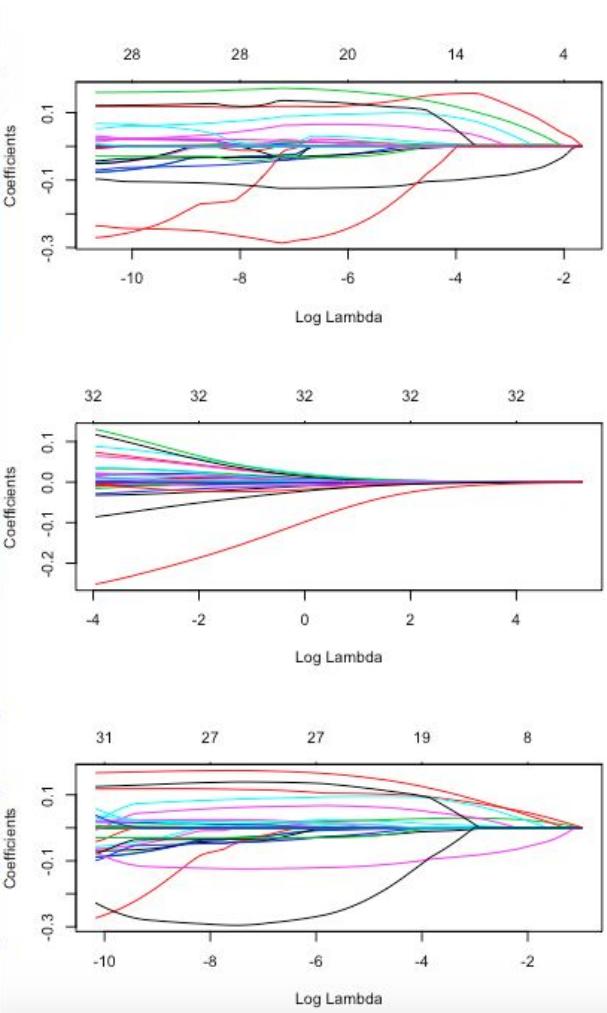
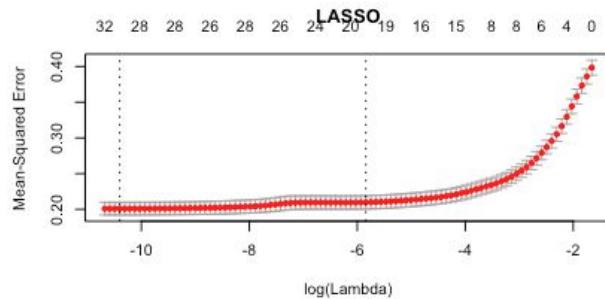
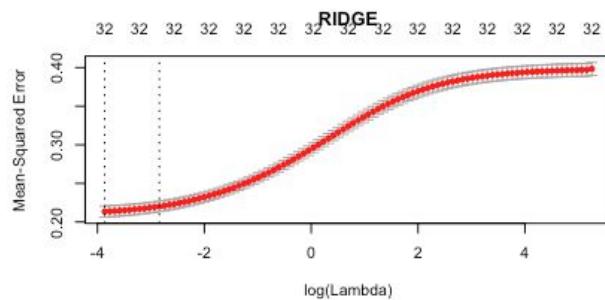
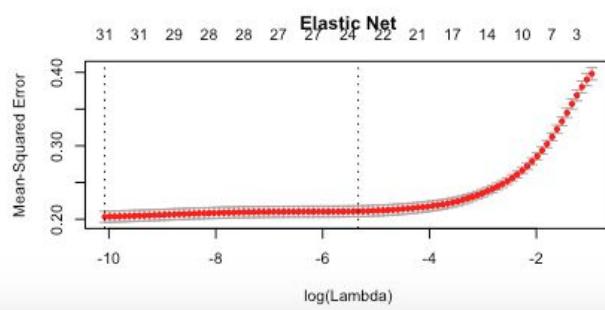
Plot the solution path and cross-validated MSE as function of λ

```
plot(fit.lasso2,xvar='lambda')
plot(fit10,main='LASSO')

plot(fit.ridge2,xvar='lambda')
plot(fit0,main='RIDGE')

plot(fit.elnet2,xvar='lambda')
plot(fit5,main='Elastic Net')
```

LASSO



ELASTIC NET

Prediction-Unemployment

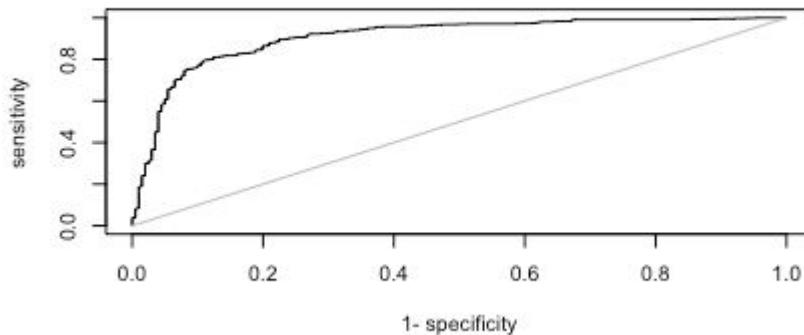
Predict $\hat{y}_{0.2}$ to $\hat{y}_{10.2}$ using the fit for each alpha

```
yhat0.2<-predict(fit0,s=fit0$lambda.1se,newx=x.test2)
```

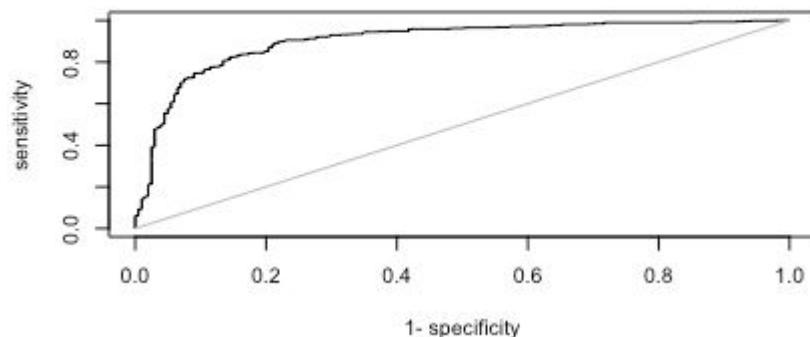
Compute The ROC curve and AUC for each model

```
roc.res0=roc(yhat0.2,factor(y.test2)) #Ridge
auc(roc.res0)
roc.res5=roc(yhat5.2,factor(y.test2)) #Elnet
auc(roc.res5)
roc.res10=roc(yhat10.2,factor(y.test2)) #LASSO
auc(roc.res10)
```

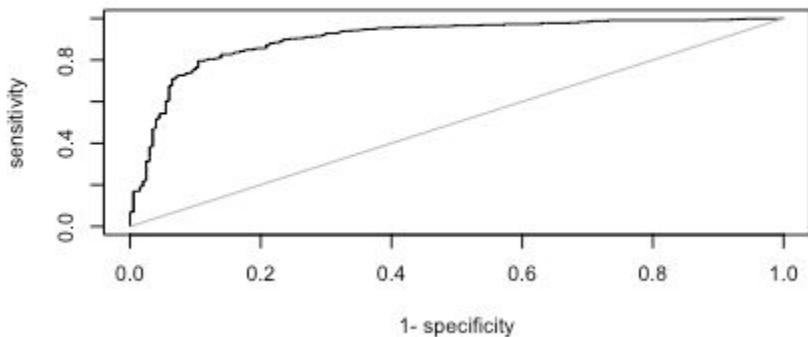
ROC for LASSO



ROC for RIDGE



ROC for ELASTIC NET



Fitting the Unemployment Model

```
fit.lasso2<-glmnet(x.train2,y.train2,family='binomial',alpha=1)
```

AUC=0.9070913

```
fit.ridge2<-glmnet(x.train2,y.train2,family="binomial",alpha=0)
```

AUC=0.903377

```
fit.elnet2<-glmnet(x.train2,y.train2,family='binomial',alpha=0.5)
```

AUC=0.9048422

LASSO Regression

- Removes insignificant predictors
- Shrinks insignificant predictors to 0

(Intercept)	9.399631e-01	Professional	-3.714666e-02
TotalPop	.	Service	9.031317e-02
Men	.	Office	6.369201e-02
Hispanic	-1.470381e-02	Construction	-3.027857e-02
White	-1.642101e-02	Production	.
Black	1.727910e-02	Drive	-3.209371e-02
Native	7.595874e-03	Carpool	3.335307e-03
Asian	-2.301892e-02	Transit	.
Pacific	.	Walk	1.633950e-02
Citizen	5.820210e-06	OtherTransp	1.345186e-01
Income	-6.375330e-05	WorkAtHome	.
IncomeErr	-8.213828e-05	MeanCommute	1.710650e-01
IncomePerCap	2.067713e-05	Employed	.
IncomePerCapErr	-1.418053e-04	PrivateWork	.
Poverty	1.184282e-01	PublicWork	1.615714e-02
ChildPoverty	1.116098e-02	SelfEmployed	-1.240718e-01
		FamilyWork	-2.772516e-01

Final Models

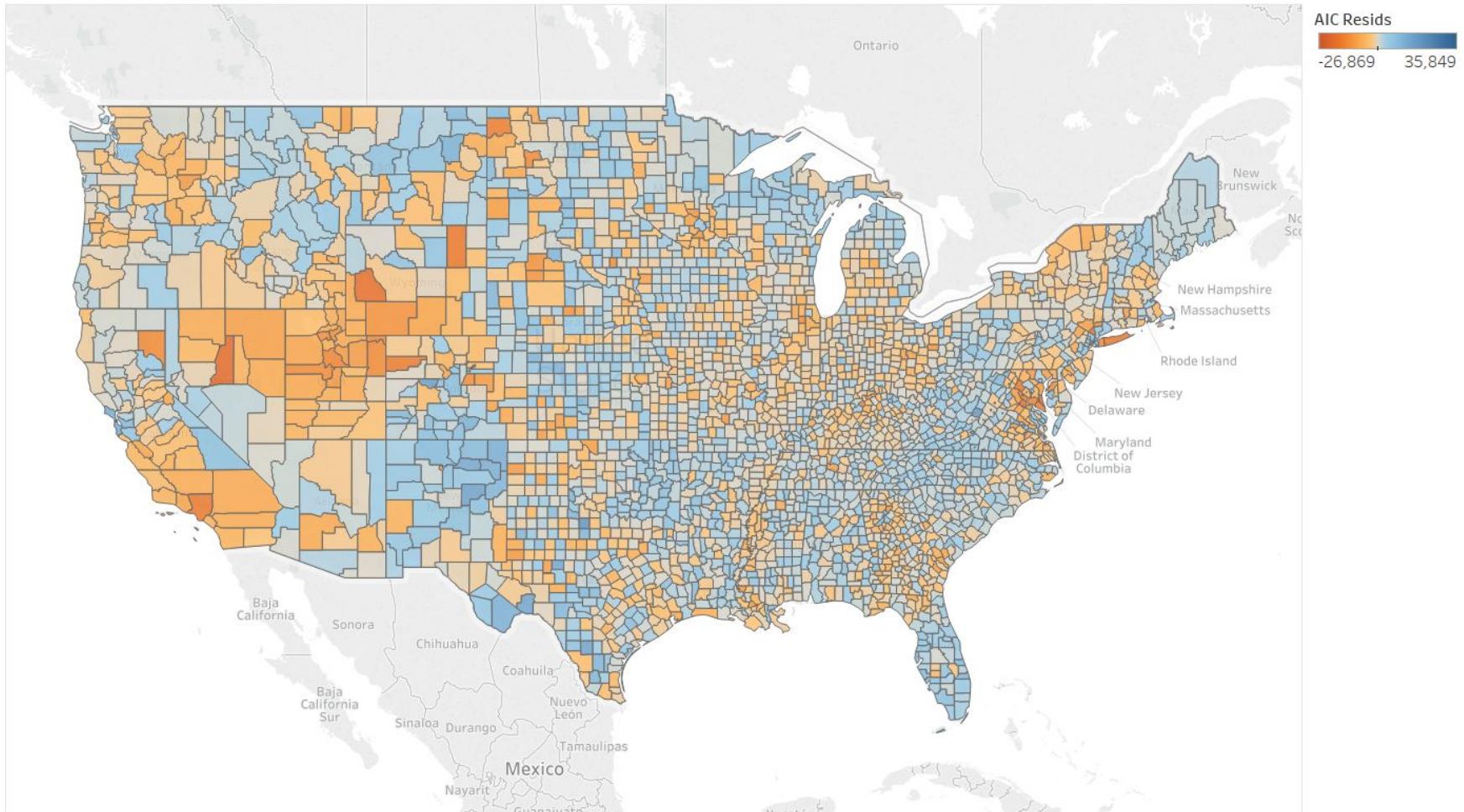
Model for predicting income(Elastic net)

```
fit.elnet<-glmnet(x.train,y.train,family='gaussian',alpha=0.5)
```

Model for predicting unemployment rate(Lasso)

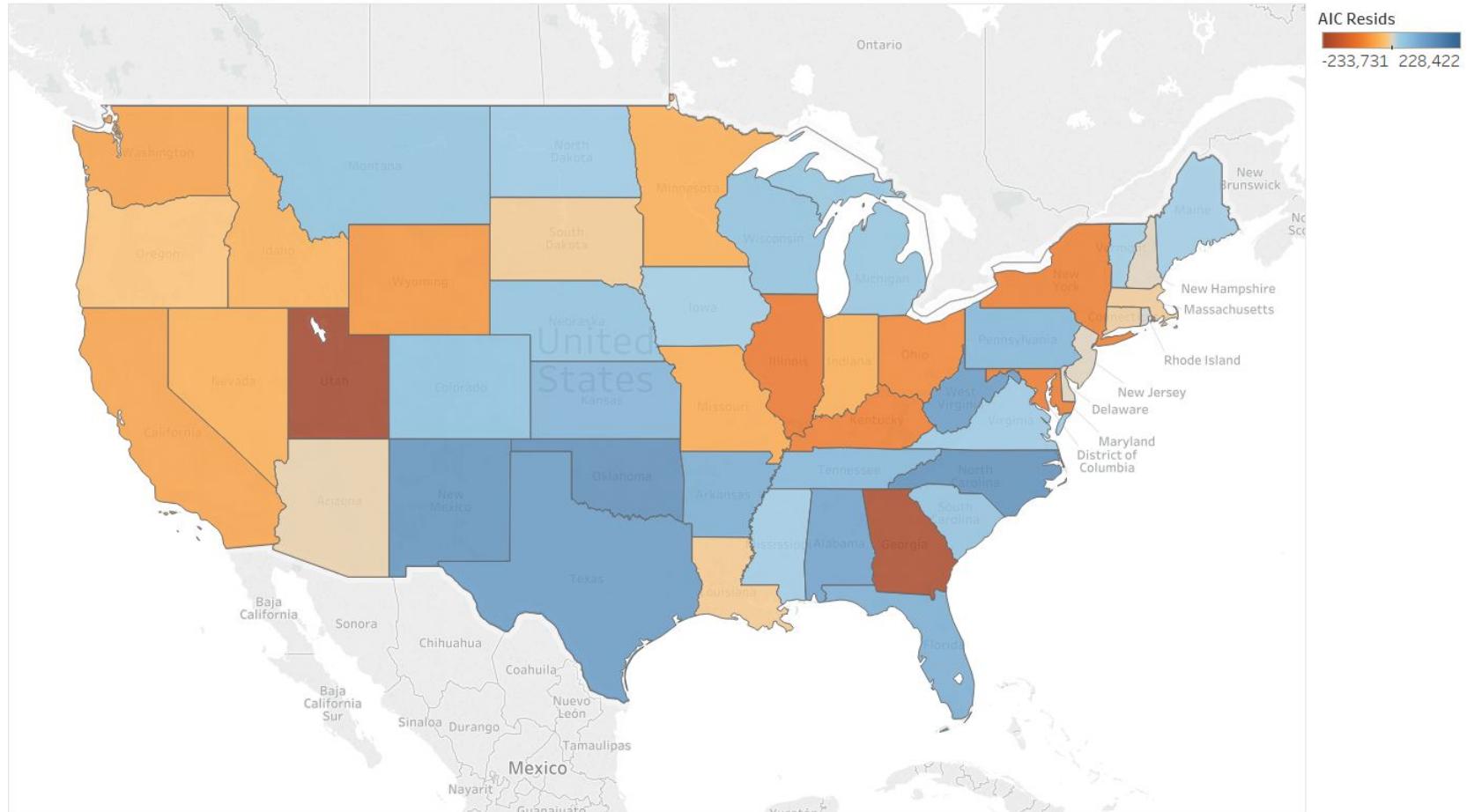
```
fit.lasso2<-glmnet(x.train2,y.train2,family='binomial',alpha=1)
```

Residual Heat Map through Forward/Backward Selection



Map based on Longitude (generated) and Latitude (generated). Color shows sum of AIC Resids. Details are shown for State and County.

Residual Heat Map through Forward/Backward Selection



Conclusion

- **Use of these models:**
 - If you have current county information, you can predict income and unemployment levels
 - If you have a projection of where the county is going in the future, these models can determine what the unemployment and income levels may be
 - Look at variables to determine which conditions could be improved to increase income or lower unemployment
- **Future study:**
 - Refit these models when the 2020 census data comes out
 - Use these models to predict what income and unemployment may look like for the 2020 census